
Learn Docker

Ákos Takács

Apr 01, 2024

INTRO:

1 Getting started 3
1.1 Docker CE vs Docker Desktop . 3
1.2 Requirements . 3
1.3 Clone the git repository . 4
1.4 Scripts . 5
1.5 Example projects . 5

2 LXD 7
2.1 Install LXD 4.0 LTS . 7
2.2 Remote repositories . 9
2.3 Search for images . 9
2.4 Show image information . 9
2.5 Start Ubuntu 20.04 container . 9
2.6 List LXC containers . 9
2.7 Enter the container . 10
2.8 Delete the container . 10
2.9 Start Ubuntu 20.04 VM . 10

3 Docker 11
3.1 System information . 11
3.2 Run a stateless DEMO application . 11
3.3 Play with the “hello-world” container . 11
3.4 Start an Ubuntu container . 13
3.5 Start Apache HTTPD webserver . 14
3.6 Start Ubuntu virtual machine . 17

4 Start a simple web server with mounted document root 19

5 Build yur own web server image and copy the document root into the image 21

6 Create your own PHP application with built-in PHP web server 23

7 Create a simple Docker Compose project 25

8 Communication of PHP and Apache HTTPD web server with the help of Docker Compose 27

9 Run multiple Docker Compose projects on the same port using nginx-proxy 29

10 Protect your web server with HTTP authentication 35

11 Memory limit test in a Bash container 39

i

11.1 Files . 39
11.2 Description . 40
11.3 Start the test . 40
11.4 Explanation of the parameters . 40

12 CPU limit test 41
12.1 Files . 41

13 Learn what EXPOSE is and when it matters 43
13.1 Intro . 43
13.2 Accessing services from the host using the container’s IP address 44
13.3 Using user-defined networks to access services in containers . 45
13.4 What is the connection between port forwards and exposed ports? 48

14 Docker network and network namespaces in practice 49
14.1 Linux Kernel Namespaces in general . 49
14.2 Network traffic between a container and the outside world . 52
14.3 Manipulating network namespaces . 57
14.4 Testing a web-based application without internet in a container . 66
14.5 Used sources . 73
14.6 Recommended similar tutorials . 73

15 Everything about Docker volumes 75
15.1 Intro . 75
15.2 Where does Docker store data? . 75
15.3 What is a Docker volume? . 76
15.4 Custom volume path . 77
15.5 Docker CE volumes on Linux . 80
15.6 Docker Desktop volumes . 81
15.7 Editing files on volumes . 88
15.8 Conclusion . 91

ii

Learn Docker

My name is Ákos Takács and I really like working with Docker containers and containers in general. I decided to
share my experience so I created this page to help you through your journey in learning Docker and related tools and
concepts. I am a moderator on forums.docker.com, I’m on YouTube (@itsziget (Hungarian), @akos.takacs (English)),
and you can follow me on Twitter

In this project I share explanations, examples and scripts. The examples were originally made for the participants of
the Ipszilon Seminar in 2017 in Hungary. The virtual machines were created in the Cloud For Education system. Since
then I added more contents and I will continue to do so.

Before you start working with the example projects, read Getting started.

INTRO: 1

https://forums.docker.com/
https://www.youtube.com/@itsziget
https://www.youtube.com/@akos.takacs
https://twitter.com/rimelek

Learn Docker

2 INTRO:

CHAPTER

ONE

GETTING STARTED

1.1 Docker CE vs Docker Desktop

Very important to know that Docker CE often referred to as Docker Engine is not the same as Docker Desktop. Docker
Desktop adds new features for development purposes, but it runs a virtual machine (yes, even on Linux) so you will
lose some features that you would be able to use with Docker CE.

This tutorial will mostly use Docker CE, but you can use Docker Desktop depending on your needs, however, some of
the examples might not work. Whenever an example requires Docker Desktop, it will be noted before the example.

1.2 Requirements

1.2.1 Install Docker

Docker can be installed from multiple sources. Not all sources are officially supported by Docker Inc. It is recommended
to follow the official way whenever it is possible. Docker is not supported on all Linux distributions, although some
distributions have their own way to install Docker or Docker Desktop. Keep in mind that in those cases it is likely that
the developers of Docker or people on the Docker forum can’t help you and you need to rely on the community of the
distribution you have chosen.

Docker CE
Docker Community Edition. It is free to use even for commercial projects, although it does not have commercial
support. Docker CE is open source an the source code of the daemon is available on GitHub in moby/moby The
source code of the client is in docker/cli Installation instructions for Linux containers in the official documenta-
tion: engine/install/#server For Windows containers you can follow the instructions of Microsoft: Get Started:
Prep Windows for Containers This is the recommended way to run containers natively on the preferred operating
system.

Docker EE
Docker Enterprise Edition doesn’t exist anymore. It was the enterprise version of Docker with commercial
support until Mirantis bought Docker EE. See below.

Mirantis Container Runtime
Mirantis Container Runtime used for Mirantis Kubernetes Engine If you need commercial support (from Miran-
tis) this is the recommended way.

Docker Desktop
Docker Desktop was created for two purposes:

• It provides developer tools using a virtualized environment based on LinuxKit.

• Running native Linux containers is not possible on Windows or macOS, only on Linux. Since Docker
Desktop runs Docker CE in a virtual machine Docker Inc can support running Docker containers on macOS

3

https://docs.docker.com/engine/install/
https://github.com/moby/moby
https://github.com/docker/cli
https://docs.docker.com/engine/install/#server
https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment
https://learn.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment
https://www.mirantis.com/software/mirantis-container-runtime/
https://www.mirantis.com/software/mirantis-kubernetes-engine/
https://github.com/linuxkit/linuxkit

Learn Docker

and Windows. Docker Inc is doing their best to make you feel you are running native Docker containers,
but you need to keep in mind that you are not.

Docker Desktop is not open source, even though LinuxKit is. You can use it on your computer for personal
purposes, and it is free for small companies too. Check the official documentation for up-to-date information
about whether it is free for you or not. Docker Desktop. At the time of writing this tutorial the short version of
Docker Desktop terms is the following:

“Commercial use of Docker Desktop in larger enterprises (more than 250 employees OR more than
$10 million USD in annual revenue) requires a paid subscription.”

Rancher Desktop
Rancher Desktop is similar to Docker Desktop, although it is created for running specific version of Kubernetes.
You can use it for running Docker containers, but you will not be able to use the developer tools of Docker
Desktop. For the installation instructions, follow the official documentation: Rancher Desktop If you want to
know more about using Rancher Desktop with Docker Desktop on the same macOS machine, you can watch my
Youtube video: Docker Desktop and Rancher Desktop on the same macOS machine

1.2.2 Install Docker Compose v2

Docker Compose v2 is Docker CLI plugin to run Docker Compose projects. This is the recommended way to use
Docker Compose. Since Docker Compose could already be on your system after installing Docker, check the below
command first:

docker compose version

Use space between “docker” and “compose”. If the “compose” subcommand doesn’t work, follow the official docu-
mentation for the installation instructions: Install Docker Compose

1.2.3 jq for parsing json files

Some of the examples will use jq. Click the link for the installation instruction.

1.2.4 Operating system

Linux is always supported and I do my best to support Docker Desktop on macOS, but not all the examples will work
on macOS unless you run Linux in a virtual machine.

1.3 Clone the git repository

git clone https://github.com/itsziget/learn-docker.git

4 Chapter 1. Getting started

https://docs.docker.com/desktop/
https://rancherdesktop.io/
https://www.youtube.com/watch?v=jaj5OCFQHxU
https://docs.docker.com/compose/install/
https://stedolan.github.io/jq/

Learn Docker

1.4 Scripts

system/usr/local/bin/nip.sh
nip.io generates domain names for the public DNS server based on the current WAN or LAN IP address of the
host machine. It must be copied into /usr/local/bin/ with the filename “nip.sh”. When you execute “nip.sh”, a
domain name will be shown (Ex.: 192.168.1.2.nip.io) which you can use for the examples. The command takes
one optional parameter as a subdomain. Ex.: “nip.sh web1”. The result would be: web1.192.168.1.2.nip.io

system/etc/profile.d/nip.variable.sh
It uses the nip command to set the NIP environment variable so you can use the variable in a docker-compose.yml
too.

Make sure you each script is executable before you continue. However, the above scripts are optional and you may not
need them in a local virtual machine. If you don’t want to rely on automatic IP address detection, set the NIP variable
manually.

1.5 Example projects

Example projects are in the learn-docker/projects folder, so go to there.

Check the existence of $NIP variable since you will need it for some examples:

If it does not exist or empty, then set the value manually or run the script below:

All off the examples were tested with Docker 20.10.23. The version of Docker Compose was 2.15.1. You can try with
more recent versions but some behaviour could be different in the future.

1.4. Scripts 5

Learn Docker

6 Chapter 1. Getting started

CHAPTER

TWO

LXD

Before using Docker containers it’s good to know a little about a similar tool. LXD can run containers and also virtual
machines with similar commands. It uses LXC to run containers (as Docker did at the beginning) and Qemu-KVM to
run virtual machines. To install LXD 4.0 LTS you need snap.

2.1 Install LXD 4.0 LTS

sudo snap install --channel 4.0/stable lxd

Now you need to initialize the configuration:

lxd init

You will found the following questions:

1. Question: Would you like to use LXD clustering? (yes/no) [default=no]:
Answer: no

2. Question: Do you want to configure a new storage pool? (yes/no) [default=yes]:
Answer: yes

3. Question: Name of the new storage pool [default=default]
Answer: default

4. Question:* Name of the storage backend to use (btrfs, dir, lvm, zfs, ceph) [default=zfs]:
Answer: zfs

5. Question: Create a new ZFS pool? (yes/no) [default=yes]:
Answer: yes

6. Question: Would you like to use an existing empty block device (e.g. a disk or partition)? (yes/no)
[default=no]:
Answer: no

7. Question: Size in GB of the new loop device (1GB minimum) [default=25GB]:
Answer: Choose a suitable size for you depending on how much space you have.

8. Question: Would you like to connect to a MAAS server? (yes/no) [default=no]:
Answer: no

9. Question: Would you like to create a new local network bridge? (yes/no) [default=yes]:
Answer: yes

10. Question: What should the new bridge be called? [default=lxdbr0]:

7

https://snapcraft.io/

Learn Docker

Answer: lxdbr0

11. Question: What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Answer: auto

12. Question: What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
Answer: none

13. Question: Would you like LXD to be available over the network? (yes/no) [default=no]:
Answer: no

14. Question: Would you like stale cached images to be updated automatically? (yes/no) [default=yes]
Answer: no

15. Question: Would you like a YAML “lxd init” preseed to be printed? (yes/no) [default=no]:
Answer: Optional. Type “yes” if you want to see the result of the initialization.

Output:

config:
images.auto_update_interval: "0"

networks:
- config:

ipv4.address: auto
ipv6.address: none

description: ""
name: lxdbr0
type: ""
project: default

storage_pools:
- config:

size: 25GB
description: ""
name: default
driver: zfs

profiles:
- config: {}
description: ""
devices:
eth0:
name: eth0
network: lxdbr0
type: nic

root:
path: /
pool: default
type: disk

name: default
cluster: null

8 Chapter 2. LXD

Learn Docker

2.2 Remote repositories

There are multiple available remote repositories to download base images. For example: https://images.linuxcontainers.
org

You can list all of them with the following command:

lxc remote list

2.3 Search for images

Pass <reponame>:<keywords> to lxc image list

lxc image list images:ubuntu
or
lxc image list images:ubuntu focal
or
lxc image list images:ubuntu 20.04
or
lxc image list ubuntu:20.04

2.4 Show image information

To show information about a specific image use lxc image info with <reponame>:<knownalias>

lxc image info ubuntu:f

Aliases are the names of the images with which you can refer to a specific image. One image can have multiple aliases.
The previous command’s output is a valid YAML so you can use yq to process it.

lxc image info ubuntu:focal | yq '.Aliases'

2.5 Start Ubuntu 20.04 container

lxc launch ubuntu:20.04 ubuntu-focal

2.6 List LXC containers

lxc list

2.2. Remote repositories 9

https://images.linuxcontainers.org
https://images.linuxcontainers.org
https://github.com/mikefarah/yq

Learn Docker

2.7 Enter the container

lxc exec ubuntu-focal bash

Then just use exit to quit the container.

2.8 Delete the container

lxc delete --force ubuntu-focal

2.9 Start Ubuntu 20.04 VM

You can even create a virtual machine instead of container if you have at least LXD 4.0 installed on your machine.

lxc launch --vm ubuntu:20.04 ubuntu-focal-vm

It will not work on all machines, only when Qemu KVM is supported on that machine.

10 Chapter 2. LXD

CHAPTER

THREE

DOCKER

3.1 System information

docker help
docker info
docker version
docker version --format '{{json .}}' | jq # requires jq installed
docker version --format '{{.Client.Version}}'
docker version --format '{{.Server.Version}}'
docker --version

3.2 Run a stateless DEMO application

docker run --rm -p "8080:80" itsziget/phar-examples:1.0
Press Ctrl-C to quit

3.3 Play with the “hello-world” container

3.3.1 Start “hello-world” container

docker run hello-world
or
docker container run hello-world

Output:

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

(continues on next page)

11

Learn Docker

(continued from previous page)

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

3.3.2 List containers

List running containers

docker ps
or
docker container ps
or
docker container ls
or
docker container list

List all containers

docker ps -a
or use the other alias commands

List containers based on the hello-world image:

docker ps -a -f ancestor=hello-world
or
docker container list --all --filter ancestor=hello-world

3.3.3 Delete containers

Delete a stopped container

docker rm containername
or
docker container rm containername

Delete a running container:

docker rm -f containername

If the generated name of the container is “angry_shaw”

docker rm -f angry_shaw

12 Chapter 3. Docker

Learn Docker

3.3.4 Start a container with a name

docker run --name hello hello-world

Running the above command again results an error message since “hello” is already used for the previously started
container. Run the following command to check the stopped containers:

docker ps -a

Or you can start the stopped container again by using its name:

docker start hello

The above command will display the name of the container. You need to start it in “attached” mode in order to see the
output:

docker start -a hello

Delete the container named “hello”

docker rm hello

3.3.5 Start a container and delete it automatically when it stops

docker run --rm hello-world

3.4 Start an Ubuntu container

3.4.1 Start Ubuntu in foreground (“attached” mode)

docker run -it --name ubuntu-container ubuntu:20.04

Press Ctrl+P and then Ctrl+Q to detach from the container or type exit and press enter to exit bash and stop the
container.

3.4.2 Start Ubuntu in background (“detached” mode)

Linux distribution base Docker images usually don’t contain Systemd as LXD images so these containers cannot run
in background unless you pass -it to get interactive terminal. It wouldn’t be necessary with a container which has
a process inside running in foreground continuously. -it works with other containers too as long as the containers
command is “bash” or some other shell.

docker rm -f ubuntu-container
docker run -it -d --name ubuntu-container ubuntu:20.04

Note: Actually only -i or -t would be enough to keep the container in the background, but if you want to attach the
container later, it requires both of them. Of course, -d is always required.

3.4. Start an Ubuntu container 13

Learn Docker

3.4.3 Attach the container

You can attach the container and see the same as you could see when you run a container without -d, in foreground.
You can even interact with the container’s main process so be careful and don’t execute a command like exit, or you
will stop the whole container by stopping its main process.

docker attach ubuntu-container

Press Ctrl+P and then Ctrl+Q to quit without stopping the container.

The better way to “enter” the container is docker exec which is similar to the way of LXD.

docker exec -it ubuntu-container

Now you can use the “exit” command to quit the container and leave it running.

3.5 Start Apache HTTPD webserver

3.5.1 Start the container in the foreground

docker run --name web httpd:2.4

There will be no prompt until you press “CTRL+C” to stop the container running in the foreground.

Note: When you change your terminal window it will send SIGWINCH signal to the container and shut down the
server. Use it only for some quick test.

3.5.2 Start it in the background

docker rm web
docker run -d --name web httpd:2.4

Note: You don’t need to use -it and you should not use that either. Running HTTPD server container with and
interactive terminal will send SIGWINCH signal to the container and shut down the HTTPD server immediately when
you try to attach it.

Even without -it, attaching the HTTPD server container will shut down the server when you change the size of your
terminal window.

Use docker logs instead.

14 Chapter 3. Docker

Learn Docker

3.5.3 Check container logs

docker logs shows the standard error and output of a container without attaching it. Actually it will read and show
the content of the log file which was saved from the container’s output.

docker logs web
or
docker container logs web

Watch the output (logs) continuously

docker logs -f web
Press Ctrl-C to stop watching

3.5.4 Open the webpage using an IP address

Get the IP address:

CONTAINER_IP=$(docker container inspect web --format '{{.NetworkSettings.IPAddress}}')

You can test if the server is working using wget:

wget -qO- $CONTAINER_IP

Output:

<html><body><h1>It works!</h1></body></html>

3.5.5 Use port forwarding

Delete the container named “web” and forward the port 8080 from the host to the containers internal port 80:

docker rm -f web
docker run -d -p "8080:80" --name web httpd:2.4

Then you can access the page using the host’s IP address.

3.5.6 How we could enter a container in the past

Before docker exec was introduced, nsenter was the only way to enter a container. It does almost the same as
docker exec except it does not support Pseudo-TTY so some commands may not work.

CONTAINER_PID=$(docker container inspect --format '{{ .State.Pid }}' web)

sudo nsenter \
--target $CONTAINER_PID \
--mount \
--uts \
--ipc \
--net \

(continues on next page)

3.5. Start Apache HTTPD webserver 15

Learn Docker

(continued from previous page)

--pid \
--cgroup \
--wd \
env -i - $(sudo cat /proc/$CONTAINER_PID/environ | xargs -0) bash

As you can see, nsenter runs a process inside specific Linux namespaces.

3.5.7 Share namespaces

docker rm -f web
docker run -d --name web \

--net host \
--uts host \
--pid host \
httpd:2.4

This example shows how you can share the host’s namespaces with the container.

• net: The container will not get a virtual network. Localhost inside the container will be the same as localhost on
the host operating system.

• uts: When you enter the container you will see that the hostname in the prompt is the same as you can see on the
host. Without this, the container had a random hash as hostname.

• pid: The container can see every process running on the host and not just inside the container.

Note: Using user namespace in a Docker container is disabled by default

Note: Since Docker Desktop runs Docker CE in a virtual machine, sharing namespaces with the host means that you
will use the namespace of the virtual machine, not the actual host operating system where you run the Docker client.
As a result, you will still not be able to access ports on localhost of the host operating system, the hostname will be the
hostname of the virtual machine and the processes inside the container will see the processes running inside the virtual
machine only.

Now enter the container

docker exec -it web bash

and install the following tools, so you can see host processes and network interfaces from the container.

apt update
apt install iproute2 procps psmisc

• iproute2: adds the ip command

• procps: installs the ps command

• psmisc: this makes pstree command available

Now run

• ip addr to see network interfaces

16 Chapter 3. Docker

https://docs.docker.com/engine/security/userns-remap/

Learn Docker

• ps auxf to see host processes

• pstree to see the process tree

You can exit the container and run the following command to get only the processes inside the container:

docker exec web ps auxf $(docker container inspect --format '{{ .State.Pid }}' web)

3.6 Start Ubuntu virtual machine

There are multiple ways to run a virtual machine with Docker. Using a parameter is not enough. You need to choose
a different runtime. The default is runc which runs containers. One of the most popular and easiest runtime is Kata
Containers.

Follow the instructions to install the latest stable version of the Kata runtime: Install Kata Containers and configure
Docker daemon to use it. An example /etc/docker/daemon.json is the following:

{
"default-runtime": "runc",
"runtimes": {
"kata": {
"path": "/usr/bin/kata-runtime"

}
}

}

Now run

docker run -d -it --runtime kata --name ubuntu-vm ubuntu:20.04

It is still lightweight. You can run ps aux inside to see there is no systemd or other process like that, however, run the
following command on the host machine and see it has only one CPU core:

docker exec -it ubuntu-vm cat /proc/cpuinfo

3.6. Start Ubuntu virtual machine 17

https://katacontainers.io/
https://katacontainers.io/
https://github.com/kata-containers/kata-containers/tree/main/docs/install

Learn Docker

18 Chapter 3. Docker

CHAPTER

FOUR

START A SIMPLE WEB SERVER WITH MOUNTED DOCUMENT ROOT

Note: Clone the git repository if you haven’t done it yet.

Go to Project 1 from the git repository root:

cd projects/p01

Project structure:

.
www

index.html

This project contains only one folder, “www” and an index.html in it with the following line:

Hello Docker (p01)

Start the container and mount “www” as document root:

docker run -d -v $(pwd)/www:/usr/local/apache2/htdocs:ro --name p01_httpd -p "8080:80"␣
→˓httpd:2.4
or
docker run -d --mount type=bind,source=$(pwd)/www,target=/usr/local/apache2/htdocs,
→˓readonly --name p01_httpd -p "8080:80" httpd:2.4

Generate a domain name:

nip.sh
example output:
192.168.1.2.xip.io

In case are working in the cloned repository of this tutorial, you can also run the below command to set the variable

../../system/usr/local/bin/nip.sh

Test the web page:

http://192.168.1.2.nip.io:8080

Now you should see the content of the mounted index.html

Delete the container to make port 8080 free again.

19

Learn Docker

docker rm -f p01_httpd

20 Chapter 4. Start a simple web server with mounted document root

CHAPTER

FIVE

BUILD YUR OWN WEB SERVER IMAGE AND COPY THE DOCUMENT
ROOT INTO THE IMAGE

Note: Clone the git repository if you haven’t done it yet.

Go to Project 2 from the git repository root:

cd projects/p02

Project structure:

.
Dockerfile
www

index.html

The content of the html file

Hello Docker (p02)

and the Dockerfile

FROM httpd:2.4

LABEL hu.itsziget.ld.project=p02

COPY www /usr/local/apache2/htdocs

Building an image:

docker build -t localhost/p02_httpd .

The dot character at the and of the line is important and required.

Start container:

docker run -d --name p02_httpd -p "80:80" localhost/p02_httpd

You can open the website from a web browser on port 80. The output should be “Hello Docker (p02)”

Delete the container to make port 8080 free again.

21

Learn Docker

docker rm -f p02_httpd

22 Chapter 5. Build yur own web server image and copy the document root into the image

CHAPTER

SIX

CREATE YOUR OWN PHP APPLICATION WITH BUILT-IN PHP WEB
SERVER

Note: Clone the git repository if you haven’t done it yet.

Go to Project 3 from the git repository root:

cd projects/p03

Project structure:

.
Dockerfile
www

index.php

The content of the index.php

<?php

file_put_contents(__DIR__ . '/access.txt', date('Y.m.d. H:i:s') . "\n", FILE_APPEND);

echo 'P03
';
echo nl2br(file_get_contents(__DIR__ . '/access.txt'));

and the Dockerfile

FROM php:7.4-alpine

LABEL hu.itsziget.ld.project=p03

COPY www /var/www

CMD ["php", "-S", "0.0.0.0:80", "-t", "/var/www"]

CMD php -S 0.0.0.0:80 -t /var/www
is the same as
CMD ["sh", "-c", "php -S 0.0.0.0:80 -t /var/www"]

Build an image:

23

Learn Docker

docker build -t localhost/p03_php .

Start the container:

docker run -d --name p03_php -p "8080:80" localhost/p03_php

Open in a web browser and reload the page multiple times. You can see the output is different each time with more
lines.

Now delete the container. Probably you already now how, but as a reminder I show you again:

docker rm -f p03_php

Execute the “docker run . . . ” command again and reload the example web page to see how you have lost the previously
generated lines and delete the container again.

Now start the container with a volume to preserve data:

docker run -d --mount source=p03_php_www,target=/var/www --name p03_php -p "8080:80"␣
→˓localhost/p03_php

This way you can delete and create the container repeatedly a you will never lose your data until you delete the volume.
You can see all volumes with the following command:

docker volume ls
or
docker volume list

After you have deleted the container, you can delete the volume:

docker rm -f p03_php
docker volume rm p03_php_www

24 Chapter 6. Create your own PHP application with built-in PHP web server

CHAPTER

SEVEN

CREATE A SIMPLE DOCKER COMPOSE PROJECT

Note: Clone the git repository if you haven’t done it yet.

Go to Project 4 from the git repository root:

cd projects/p04

Project structure:

.
Dockerfile
docker-compose.yml
www

index.php

The content of index.php

<?php

file_put_contents(__DIR__ . '/access.txt', date('Y.m.d. H:i:s') . "\n", FILE_APPEND);

echo 'P04
';
echo nl2br(file_get_contents(__DIR__ . '/access.txt'));

the compose file

volumes:
php_www:

services:
php:
image: localhost/p04_php
build:
context: .
dockerfile: Dockerfile

volumes:
- php_www:/var/www

ports:
- "8080:80"

and the Dockerfile

25

Learn Docker

FROM php:7.4-alpine

LABEL hu.itsziget.ld.project=p04

COPY www /var/www

CMD ["php", "-S", "0.0.0.0:80", "-t", "/var/www"]

Build an image and start the container using Docker Compose:

docker compose up -d

Check the container:

docker compose ps
The name of the container: p04_php_1

Check the networks:

docker network ls
New bridge network: p04_default

Delete the container, and networks with Docker Compose:

docker compose down

Or delete the volumes too.

docker compose down --volumes

26 Chapter 7. Create a simple Docker Compose project

https://docs.docker.com/compose/

CHAPTER

EIGHT

COMMUNICATION OF PHP AND APACHE HTTPD WEB SERVER
WITH THE HELP OF DOCKER COMPOSE

Note: Clone the git repository if you haven’t done it yet.

Go to Project 5 from the git repository root:

cd projects/p05

Project structure:

.
Dockerfile
docker-compose.yml
www

index.php

The content of index.php

<?php

file_put_contents(__DIR__ . '/access.txt', date('Y.m.d. H:i:s') . "\n", FILE_APPEND);

echo 'P05: ' . getenv('HOSTNAME') . '
';
echo nl2br(file_get_contents(__DIR__ . '/access.txt'));

the compose file

volumes:
www:

services:
php:
image: localhost/p05_php
build:
context: .
dockerfile: Dockerfile

volumes:
- www:/var/www/html

httpd:
image: itsziget/httpd24:2.0

(continues on next page)

27

Learn Docker

(continued from previous page)

volumes:
- www:/var/www/html

environment:
SRV_PHP: "true"
SRV_DOCROOT: /var/www/html

ports:
- "8080:80"

and the Dockerfile

FROM itsziget/php:7.4-fpm

LABEL hu.itsziget.ld.project=p05

COPY www /var/www/html

The scripts interpreted by PHP-FPM executes on behalf of "www-data" user.
RUN chown www-data:www-data -R /var/www/html

Build PHP image and start the containers:

docker compose up -d

Start multiple container for PHP:

docker compose up -d --scale php=2

List the containers to see PHP has multiple instance:

docker compose ps

Open the page in your browser and you can see the hostname in the first line is not constant. It changes but not every
time, although the data is permanent.

Delete everything created by Docker Compose for this project:

docker compose down --volumes

28 Chapter 8. Communication of PHP and Apache HTTPD web server with the help of Docker
Compose

CHAPTER

NINE

RUN MULTIPLE DOCKER COMPOSE PROJECTS ON THE SAME
PORT USING NGINX-PROXY

Note: Clone the git repository if you haven’t done it yet.

See nginx-proxy

Go to Project 6 from the git repository root:

cd projects/p06

Project structure:

.
nginxproxy

docker-compose.yml
web1

Dockerfile
docker-compose.yml
www

index.php
web2

Dockerfile
docker-compose.yml
www

index.php

We will need a proxy network which will be used by all of the compose projects for the communication between NGinX
and the webservers:

docker network create public_proxy

Check the networks:

docker network ls

Navigate to the nginxproxy folder

cd nginxproxy

The compose file is the following:

29

https://hub.docker.com/r/nginxproxy/nginx-proxy

Learn Docker

name: p06proxy

networks:
default:
external: true
name: public_proxy

services:
nginx-proxy:
image: nginxproxy/nginx-proxy:1.2.0
ports:
- "80:80"

volumes:
- /var/run/docker.sock:/tmp/docker.sock:ro

Start the proxy:

docker compose up -d

Navigate to the web1 folder:

cd ../web1

Here you will have a compose file:

name: p06web1

volumes:
www:

networks:
proxy:
external: true
name: public_proxy

services:
php:
image: localhost/p06_php_web1
build:
context: .
dockerfile: Dockerfile

volumes:
- www:/var/www/html

httpd:
image: itsziget/httpd24:2.0
volumes:
- www:/var/www/html

environment:
SRV_PHP: "true"
SRV_DOCROOT: /var/www/html
VIRTUAL_HOST: web1.$NIP

networks:
- default

(continues on next page)

30 Chapter 9. Run multiple Docker Compose projects on the same port using nginx-proxy

Learn Docker

(continued from previous page)

- proxy

a Dockerfile

FROM itsziget/php:7.4-fpm

LABEL hu.itsziget.ld.project=p06

COPY www /var/www/html

The scripts interpreted by PHP-FPM executes on behalf of "www-data" user.
RUN chown www-data:www-data -R /var/www/html

and the PHP file

<?php

file_put_contents(__DIR__ . '/access.txt', date('Y.m.d. H:i:s') . "\n", FILE_APPEND);

echo 'P06WEB1: ' . getenv('HOSTNAME') . '
';
echo nl2br(file_get_contents(__DIR__ . '/access.txt'));

At this point you need to have the NIP variable set as Welcome to Learn Docker’s documentation! refers to it. Alternative
option: set the NIP variable in a “.env” file.

Start the containers:

docker-compose up -d

In case of working in the cloned repository of this tutorial, you can also run the below command to set the variable

NIP=$(../../../system/usr/local/bin/nip.sh) docker compose up -d

Navigate to the web2 folder:

cd ../web2

The compose file is similar to the previous one:

name: p06web2

volumes:
www:

networks:
proxy:
external: true
name: public_proxy

services:
php:
image: localhost/p06_php_web2
build:

(continues on next page)

31

Learn Docker

(continued from previous page)

context: .
dockerfile: Dockerfile

volumes:
- www:/var/www/html

httpd:
image: itsziget/httpd24:2.0
volumes:
- www:/var/www/html

environment:
SRV_PHP: "true"
SRV_DOCROOT: /var/www/html
VIRTUAL_HOST: web2.$NIP

networks:
- default
- proxy

we also have another Dockerfile

FROM itsziget/php:7.4-fpm

LABEL hu.itsziget.ld.project=p06

COPY www /var/www/html

The scripts interpreted by PHP-FPM executes on behalf of "www-data" user.
RUN chown www-data:www-data -R /var/www/html

and a PHP file

<?php

file_put_contents(__DIR__ . '/access.txt', date('Y.m.d. H:i:s') . "\n", FILE_APPEND);

echo 'P06WEB2: ' . getenv('HOSTNAME') . '
';
echo nl2br(file_get_contents(__DIR__ . '/access.txt'));

Start the containers:

docker compose up -d

Or you can use nip.sh as we did in web1.

Both of the services are available on port 80. Example:

http://web1.192.168.1.6.nip.io
http://web2.192.168.1.6.nip.io

This way you do not need to remove a container just because it is running on the same port you want to use for a new
container.

Clean the project:

docker compose down --volumes
cd ../web1

(continues on next page)

32 Chapter 9. Run multiple Docker Compose projects on the same port using nginx-proxy

Learn Docker

(continued from previous page)

docker compose down --volumes
cd ../nginxproxy
docker compose down --volumes

33

Learn Docker

34 Chapter 9. Run multiple Docker Compose projects on the same port using nginx-proxy

CHAPTER

TEN

PROTECT YOUR WEB SERVER WITH HTTP AUTHENTICATION

Note: Clone the git repository if you haven’t done it yet.

Go to Project 7 from the git repository root:

cd projects/p07

Project structure:

.
nginxproxy

docker-compose.yml
web

.env
docker-compose.yml
www

index.html

The first step is the same as it was in Run multiple Docker Compose projects on the same port using nginx-proxy. Let’s
go to nginxproxy

cd nginxproxy

The compose file is:

name: p07proxy

networks:
default:
external: true
name: public_proxy

services:
nginx-proxy:
image: nginxproxy/nginx-proxy:1.2.0
ports:
- "80:80"

volumes:
- /var/run/docker.sock:/tmp/docker.sock:ro

Start the proxy server:

35

Learn Docker

docker compose up -d

Go to the web folder:

cd ../web

The compose file is

name: p07web

volumes:
apache2:

networks:
proxy:
external: true
name: public_proxy

services:
htpasswd:
image: itsziget/httpd24:2.0
volumes:
- apache2:/usr/local/apache2

command:
- "/bin/bash"
- "-c"
- "htpasswd -nb $HTTPD_USER $HTTPD_PASS >> /usr/local/apache2/.htpasswd"

network_mode: none
httpd:
depends_on:
- htpasswd

image: itsziget/httpd24:2.0
volumes:
- apache2:/usr/local/apache2
- ./www:/usr/local/apache2/htdocs

networks:
- proxy

environment:
SRV_AUTH: "true"
VIRTUAL_HOST: p07.$NIP

fixperm:
depends_on:
- httpd

image: bash
volumes:
- ./www:/htdocs

network_mode: none
command:
- "bash"
- "-c"
- "find htdocs/ -type f -exec chmod -R 0655 {} \\; && chmod 0775 /htdocs && chown -

→˓R 33:33 /htdocs"

In this case we have a simple html file

36 Chapter 10. Protect your web server with HTTP authentication

Learn Docker

<p style="text-align: center; font-size: 20pt">Hello Docker User!</p>

You can simply start a web server protected by HTTP authentication. The name and the password will come from
environment variables. I recommend you to use a more secure way in production. Create the .htpasswd file manually
and mount it inside the container.

The htpasswd container will create .htpasswd automatically and exit.

In the “.env” file you can find two variables.

HTTPD_USER=user
HTTPD_PASS=secretpass

The variables will be used in “docker-compose.yml” by the “htpasswd” service to generate the password file and then
the “httpd” service will read it from the common volume.

The “fixperm” service runs and exits similarly to “htpasswd”. It sets the permission of the files after the web server
starts.

Use the “depends_on” option to control which service starts first.

At this point you need to have the NIP variable set as the Welcome to Learn Docker’s documentation! refers to it.

Alternative option: set the NIP variable in the “.env” file.

Start the web server

docker compose up -d

In case are working the in cloned repository of this tutorial, you can also run the below command to set the variable

NIP=$(../../../system/usr/local/bin/nip.sh) docker compose up -d

Open the web page in your browser (Ex.: p07.192.168.1.6.nip.io). You will get a password prompt.

Clean the project:

docker compose down --volumes
cd ../nginxproxy
docker compose down --volumes

37

Learn Docker

38 Chapter 10. Protect your web server with HTTP authentication

CHAPTER

ELEVEN

MEMORY LIMIT TEST IN A BASH CONTAINER

Note: Clone the git repository if you haven’t done it yet.

Go to Project 8 from the git repository root:

cd projects/p08

Project structure:

.
docker-compose.yml

11.1 Files

docker-compose.yml

services:
test:
image: bash:5.2
environment:
- ALLOCATE

command:
- -c
- 'fallocate -l $ALLOCATE /app/test && echo $(($(stat /app/test -c "%s") / 1024 /␣

→˓1024))'
deploy:
resources:
limits:
memory: 50MB

mem_swappiness: 0
tmpfs:
- /app

39

Learn Docker

11.2 Description

This example shows the memory testing in a bash container, where the “fallocate” command generates a file with a
defined size stored in memory using tmpfs. We use an environment variable to set the allocated memory and the
memory limit is defined in the compose file as 50 MiB.

11.3 Start the test

The container will have 50MB memory limit. (It must be at least 6MB in Docker Compose 1.27.4). The examples
below will test the memory usage from 10MB to 50MB increased by 10MB for each test.

ALLOCATE=10MiB docker compose run --rm test
ALLOCATE=20MiB docker compose run --rm test
ALLOCATE=30MiB docker compose run --rm test
ALLOCATE=40MiB docker compose run --rm test
ALLOCATE=50MiB docker compose run --rm test

Running it in Docker Desktop on macOS I get the following output:

fallocate: fallocate '/app/test': Out of memory
Out of memory

Running it on a virtual machine with an Ubuntu 20.04 host the output is:

Out of memory

Since there is some additional memory usage in the container, it kills the process at 50MiB even though 50 is still
allowed.

11.4 Explanation of the parameters

The “docker compose run” is similar to “docker run”, but it runs a service from the compose file. “–rm” means the
same as it meant for “docker run”. Deletes the container right after it stopped.

Clean the project:

docker compose down

The containers were deleted automatically, but it can still delete the network.

40 Chapter 11. Memory limit test in a Bash container

CHAPTER

TWELVE

CPU LIMIT TEST

Note: Clone the git repository if you haven’t done it yet.

Go to Project 9 from the git repository root:

cd projects/p09

Project structure:

.
Dockerfile

12.1 Files

Dockerfile

Based on "Petar Maric outdated image"
https://github.com/petarmaric/docker.cpu_stress_test

FROM ubuntu:20.04

Update the Ubuntu package index and install the required Ubuntu packages
RUN apt-get update \
&& apt-get install -y --no-install-recommends stress

Parameterize this Dockerfile, by storing the app configuration within environment␣
→˓variables
ENV STRESS_TIMEOUT 120
ENV STRESS_MAX_CPU_CORES 1

CMD stress --cpu $STRESS_MAX_CPU_CORES --timeout $STRESS_TIMEOUT

We test the CPU limit in this example using an image based on petermaric/docker.cpu-stress-test. Since that image is
outdated, we create a new image similar to Peter Maric’s work.

docker build -t localhost/stress .

Execute the following command to test a whole CPU core:

41

https://hub.docker.com/r/petarmaric/docker.cpu-stress-test

Learn Docker

docker run -it --rm \
-e STRESS_MAX_CPU_CORES=1 \
-e STRESS_TIMEOUT=30 \
--cpus=1 \
localhost/stress

Run “top” in an other terminal to see that the “stress” process uses 100% of one CPU. To see the same result on any
host operating system, we will run top in an Ubuntu container using the process namespace of the host.

docker run --rm -it --pid host ubuntu:20.04 top

Press Ctrl-C and execute the following command to test two CPU core and allow the container to use only 1 and a half
CPU.

docker run -it --rm \
-e STRESS_MAX_CPU_CORES=2 \
-e STRESS_TIMEOUT=30 \
--cpus=1.5 \
localhost/stress

Use “top” again to see that the “stress” process uses 75% of two CPU.

You can test on one CPU core again and allow the container to use 50% of a specific CPU core by setting the core
index.

docker run -it --rm \
-e STRESS_MAX_CPU_CORES=1 \
-e STRESS_TIMEOUT=60 \
--cpus=0.5 \
--cpuset-cpus=0 \
localhost/stress

You can use top again, but do not forget to add the index column to the list:

• run docker run --rm -it --pid host ubuntu:20.04 top

• press “f”

• Select column “P” by navigating with the arrow keys

• Press “SPACE” to select “P”

• Press “ESC”

Now you can see the indexes in the column “P”.

Press “1” to list all the CPU-s at the top of the terminal so you can see the usage of all the CPU-s.

42 Chapter 12. CPU limit test

CHAPTER

THIRTEEN

LEARN WHAT EXPOSE IS AND WHEN IT MATTERS

Note: Clone the git repository if you haven’t done it yet.

13.1 Intro

Go to Project 10 from the git repository root:

cd projects/p10

Project structure:

.
expose

docker-compose.yml
Dockerfile
index.html

noexpose
docker-compose.yml
Dockerfile
index.html

It is a misconception that exposing a port is required to make a service available on that specific port from the host or
from an other container.

Firewalls can make additional restrictions in which case the following examples can work differently. If some special
firewall looks for the exposed ports today or in the future, it doesn’t change the fact that exposed ports are just metadata
for an interactive user or an other software to make decisions.

This tutorial does not state that you should not use the EXPOSE instruction in the Dockerfile or the --expose option of
docker run or the expose parameter in a Docker Compose file. It only states that it is not required, so use it when
you know it is necessary either because some automation depends on it or just because you like to document which
port is used in a container.

43

Learn Docker

13.2 Accessing services from the host using the container’s IP ad-
dress

We will use noexpose/Dockerfile to build an example Python HTTP server:

noexpose/Dockerfile:

FROM python:3.8-alpine

WORKDIR /var/www
COPY index.html /var/www/index.html

CMD ["python3", "-m", "http.server", "8080"]

Let’s build the image

docker build ./noexpose -t localhost/expose:noexpose

Run the container

docker run --name p10_noexpose -d --init localhost/expose:noexpose

List the exposed ports (you should not find any)

docker container inspect p10_noexpose --format '{{ json .Config.ExposedPorts }}'
output: null

Get the IP address of the container:

IP=$(docker container inspect p10_noexpose --format '{{ .NetworkSettings.IPAddress }}')

Get the index page from the server:

curl $IP:8080
or
wget -qO- $IP:8080

The output should be

no expose

It means exposing a port is not necessary for making a service available on that port inside the container. It is just a
metadata for you and for some proxy services to automate port forwarding based on exposed ports. Docker itself will
not forward any port based on this information automatically.

Let’s remove the container

docker container rm -f p10_noexpose

44 Chapter 13. Learn what EXPOSE is and when it matters

Learn Docker

13.3 Using user-defined networks to access services in containers

You could think the previous example worked because we used the default Docker bridge which is a little different than
user-defined networks. The following example shows you that it doesn’t matter. Docker Compose creates a user-defined
network for each project, so let’s use Docker Compose to run the containers. One for the server and one for the client.

The noexpose/docker-compose.yml is the following:

name: p10noexpose

networks:
default:
client:

x-client-base: &client-base
depends_on:
- server

image: nicolaka/netshoot:v0.8
command:
- sleep
- inf

init: true

services:

server:
build: .
init: true
networks:
- default

client1:
<<: *client-base
networks:
- default

client2:
<<: *client-base
networks:
- client

Note: I used some special YAML syntax to make the compose file shorter. This way I could define the common
parameters of the client containers.

Run the containers:

docker compose -f noexpose/docker-compose.yml up -d

Get the IP address of the server container:

ID=$(docker compose -f noexpose/docker-compose.yml ps -q server)
IP=$(docker container inspect "$ID" --format '{{ .NetworkSettings.Networks.p10noexpose_

(continues on next page)

13.3. Using user-defined networks to access services in containers 45

Learn Docker

(continued from previous page)

→˓default.IPAddress }}')

Get the index page from the server:

curl $IP:8080
or
wget -qO- $IP:8080

The output should be the same as before:

no expose

Now let’s get the main page using curl from another container:

docker-compose -f noexpose/docker-compose.yml exec client1 curl $IP:8080

Again, we get the output as we expected:

no expose

What if we try from another Docker network? “client2” has its own network and doesn’t use default as the other two
containers. Let’s try from that.

docker compose -f noexpose/docker-compose.yml exec client2 curl --max-time 5 $IP:8080

I set --max-time to 5 so after about 5 seconds, it times out. Without --max-time, it would try much longer.

curl: (28) Connection timed out after 5001 milliseconds

I guess you think we finally found the case when we need to expose the port to make it available in another docker
network. Wrong.

Before we continue, let’s remove the containers

docker compose -f noexpose/docker-compose.yml down

We will use the other compose project in which EXPOSE 8080 is defined in the Dockerfile, which is the following.

expose/Dockerfile:

FROM python:3.8-alpine

WORKDIR /var/www
COPY index.html /var/www/index.html

CMD ["python3", "-m", "http.server", "8080"]

EXPOSE 8080

It will COPY an index.html containing one line:

expose PORT 8080

and we use the docker-compose.yml below:

46 Chapter 13. Learn what EXPOSE is and when it matters

Learn Docker

name: p10expose

networks:
default:
client:

x-client-base: &client-base
depends_on:
- server

image: nicolaka/netshoot:v0.8
command:
- sleep
- inf

init: true

services:

server:
build: .
init: true
networks:
- default

client1:
<<: *client-base
networks:
- default

client2:
<<: *client-base
networks:
- client

Run the project

docker compose -f expose/docker-compose.yml up -d

Get the IP address of the server

ID=$(docker compose -f expose/docker-compose.yml ps -q server)
IP=$(docker container inspect "$ID" --format '{{ .NetworkSettings.Networks.p10expose_
→˓default.IPAddress }}')

Before you run the tests, list the exposed ports (Now you should not find 8080/tcp)

docker container inspect "$ID" --format '{{ json .Config.ExposedPorts }}'

{"8080/tcp":{}}

Test the port from the host:

curl $IP:8080
or

(continues on next page)

13.3. Using user-defined networks to access services in containers 47

Learn Docker

(continued from previous page)

wget -qO- $IP:8080

And finally test it from client1 before client2, which is in a different network:

docker compose -f expose/docker-compose.yml exec client1 curl $IP:8080
docker compose -f expose/docker-compose.yml exec client2 curl --max-time 5 $IP:8080

You probably figured it out why I used --max-time again.

It doesn’t matter whether you expose the port or not. It will not help you to reach the server from a different Docker
network. You need to attach a common network to the containers in order to communicate or forward a port from the
host and use that host port as target.

It’s time to delete the containers:

docker compose -f expose/docker-compose.yml down

13.4 What is the connection between port forwards and exposed
ports?

Let’s run a simple container to demonstrate it.

docker run -d --name p10_port_forward --init -p 8081:8080 python:3.8-alpine python3 -m␣
→˓http.server 8080

Check the exposed ports:

docker container inspect p10_port_forward --format '{{ json .Config.ExposedPorts }}'

The output is familiar. We have seen it before:

{"8080/tcp":{}}

It means even if we don’t expose the port directly, but forward a port from the host, the target port will be exposed.
It is not enough though to use that port from another machine. There is another setting for the container, and that is
“PortBindings”. Let’s inspect that:

docker container inspect p10_port_forward --format '{{ json .HostConfig.PortBindings }}'

{"8080/tcp":[{"HostIp":"","HostPort":"8081"}]}

As you can see PortBindings in the HostConfig section. It is because it doesn’t affect the container itself. Instead,
it configures the host to forward a specified port to the container’s IP address. You could do it without Docker. The
problem is that you don’t know what the IP address will be, so Docker solves it for you automatically.

We can finally remove the last container since we know confidently how exposing a port does not affect whether we
can access that port or not.

docker container rm -f p10_port_forward

However, when we use Docker’s built-in port-forward, Docker also exposes the target port, which is just how Docker
works internally at the moment. It is not necessary in order to be able to access the port.

48 Chapter 13. Learn what EXPOSE is and when it matters

CHAPTER

FOURTEEN

DOCKER NETWORK AND NETWORK NAMESPACES IN PRACTICE

This tutorial can be watched on YouTube: https://youtu.be/HtJEmjW3qmg

14.1 Linux Kernel Namespaces in general

Let’s start with a simple example so we can understand why namespaces are useful.

Let’s say, you have a running PHP process on your Linux machine. That PHP process will be able to see your entire
host, including files, other running processes and all the network interfaces. It will not just see the interfaces, it will
be able to listen on all the IP addresses, so you have to configure PHP to listen on a specific IP address. PHP will also
have internet access which is usually what you want, but not always.

This is when Linux kernel namespaces can help us. A kernel namespace is like a magic wall between a running process
and the rest of the host. This magic wall will only hide some parts of the host from a specific point of view. In this
tutorial we will mainly cover the three best known point of views.

• Filesystem (Mount namespace)

• Network (Network namespace)

49

https://youtu.be/HtJEmjW3qmg

Learn Docker

• Process (PID namespace, which means “Process ID” namespace)

The first namespace is mount namespace. You could also remember it as “Jail” or “chroot”. It means the process will
see only a folder on the host and not the root filesystem. That folder could be empty, but it is very often a folder that
contains very similar files as the root filesystem does. This way PHP will “think” it is running on a different host and
it won’t even know if there is anything outside that folder.

This is not always enough. Sometimes you don’t want a specific process to see other processes on the host. In this
case you can use the PID namespace so the PHP process will not be able to see other processes on the host, only the
processes in the same PID namespace. Since on Linux there is always a process with the process ID 1 (PID 1), for any
process in the network namespace, PHP will have PID 1. For any process outside of that PID namespace, PHP will
have a larger process ID like 2324.

50 Chapter 14. Docker network and network namespaces in practice

Learn Docker

And finally we arrived to the network namespace. Network namespace can hide network interfaces from processes in
the namespace. The network namespace can have its own IP address, but it will not necessarily have one. Thanks to
the network namespace, PHP will only be able to listen its own IP address in a Docker network.

These namespaces are independent and not owned by the PHP process. Any other process could be added to these
namespaces, and you don’t need to run those processes in each namespace.

14.1. Linux Kernel Namespaces in general 51

Learn Docker

You can choose the network namespace even without the mount namespace, so you can use an application (web browser,
curl) on the host and run it in the network namespace of the PHP process, so even if the PHP is not available outside
of the container, running the browser in the network namespace of the container will allow you to access your website.

14.2 Network traffic between a container and the outside world

Your host machine usually has a network interface which is connected to the internet or at least to a local network. We
will call it “the outside world”.

52 Chapter 14. Docker network and network namespaces in practice

Learn Docker

This interface could be “eth0”, although recently it is more likely to be something like “enp1s0” or “eno1”. The point
is that traffic routed through this interface can leave the host machine. The container needs its own network interface
which is connected to another outside of the container on the host. The name of the interface on the host will start with
“veth” followed by a hash.

The veth interface will not have IP address. It could have, but Docker uses a different way so containers in the same
Docker network can communicate with each other. There will be a bridge network between the veth interface and eth0.
The the bridge of the default Docker network is “docker0”.

14.2. Network traffic between a container and the outside world 53

Learn Docker

This bridge will have an IP address which will also be the gateway for each container in the default Docker network.
Since this is on the host outside of the network namespace, any process running on the host could listen on this IP
address so processes running inside the container could use this IP to access a webservice listening on it.

Sometimes you don’t want a containerized process to access the internet, because you don’t trust an application and
you want to test or run it without internet access for security reasons indefinitely. This is when “internal networks” can
help.

Containers don’t accept port forwards on IP addresses in internal networks so it is not just rejecting outgoing traffic to
the outside world, but also rejecting incoming requests from other networks.

54 Chapter 14. Docker network and network namespaces in practice

Learn Docker

You can create a user-defined Docker network which will have a new bridge. If you also define that network as “internal”
using the following command for example

docker network create secure_net --internal

the network traffic will not be forwarded from the bridge to eth0 so PHP will only be able to access services running
on the host or in the container.

There is another very important interface called “lo” better known as “localhost” which usually has an IP address like
127.0.0.1. This is however not the only IP address that is bound to this interface. Every part of the IP could be
changed after 127. and still pointing to the same interface. It is important to know that every network namespace has
its own localhost.

Let’s see what it means.

If the web application is listening on port 80 on localhost, a web browser outside of the container will not be able to
access it, since it has a different localhost. The same is true when for example a database server is running on the host
listening on port 3306 on localhost. The PHP process inside the container will not be able to reach it.

14.2. Network traffic between a container and the outside world 55

Learn Docker

Since the reason is the network namespace, you could just run the container in host network mode

docker run -d --name php-hostnet --network host itsziget/phar-examples:1.0

which means you just don’t get the network isolation. The host network mode does not mean that you are using a special
Docker network. It only means you don’t want the container to have its own network namespace.

Of course we wanted to have the network isolation and we want to keep it. The other solution is running another
container which will use the same network namespace.

56 Chapter 14. Docker network and network namespaces in practice

Learn Docker

14.3 Manipulating network namespaces

Docker is not the only tool to manipulate namespaces. I will show you the following tools.

• Container engines (Docker)

• “ip” command

• “nsenter” command

• “unshare” command

14.3.1 Two containers using the same network namespace

Of course the first we have to talk about is still Docker. The following commands will start a PHP demo application
and run a bash container using the same network namespace as the PHP container so we can see the network interfaces
inside the PHP container.

docker run -d --name php itsziget/phar-examples:1.0
docker run --rm -it --network container:php bash:5.1 ip addr

There is a much easier solution of course. We can just use docker exec to execute a command in all of the namespaces
of the PHP container.

docker exec php ip addr

This command works only because “ip”, which is part of the “iproute2” package is installed inside the PHP container,
so it wouldn’t work with every base image and especially not with every command.

14.3. Manipulating network namespaces 57

Learn Docker

14.3.2 “nsenter”: run commands in any namespace

The “nsenter” (namespace enter) command will let you execute commands in specific namespaces. The following
command would execute ip addr in the network namespace of a process which has the process ID $pid.

sudo nsenter -n -t $pid ip addr

We have to get the id of a process running inside a container. Remember, the process has a different ID inside and
outside of the container because of the PID namespace, so we can’t just run the ps aux command inside the container.
We need to “inspect” the PHP container’s metadata.

pid="$(docker container inspect php --format '{{ .State.Pid }}')"

The above command will save the process ID in the environment variable called “pid”. Now let’s run nsenter again.

sudo nsenter -n -t $pid ip addr
sudo nsenter -n -t $pid hostname
sudo nsenter -n -u -t $pid hostname

The first command will show us the network interfaces inside the network namespace of the PHP container. The second
command will try to get the hostname of the container, but it will return the hostname of the host machine. Although
the hostname is related to the network in our mind, it is not part of the network namespace. It is actually the part of
the UTS namespace. Since the long name of the namespace would just confuse you, I will not share it at this point of
the tutorial. The good news is that we can also use the UTS namespace of the container by adding the -u flag to the
“nsenter” command, and this is what the third line does.

14.3.3 “ip netns” to create new network namespaces

“nsenter” was great for running commands in existing namespaces. If you want to create network namespaces, you can
use the ip netns command, but before we create one, let’s list existing network namespaces:

ip netns list

The above command will give you nothing even if you have running containers using network namespaces. To under-
stand why, first let’s look at content of two folders

ls /run/netns
sudo ls /run/docker/netns

The first line, used by the “ip” command will not give you anything, but the second will give you at least one file, which
is the file of the network namespace of our previously started PHP container.

As you can see, if you want to work with namespaces, you need to refer to a file or the name of the file. Docker and the
“ip” command uses a different folder to store those files. These files are not the only way to refer to network namespaces
and we will discuss it later.

It’s time to create our first network namespace without Docker.

sudo ip netns add test
ls /run/netns

The “ls” command isn’t required here, but can show us that we indeed created a file. Let’s run ip addr inside our new
network namespace:

58 Chapter 14. Docker network and network namespaces in practice

Learn Docker

sudo ip netns exec test ip addr

Note: You could actually use nsenter to run ip addr in a network namespace even if you don’t have an existing
process.

sudo nsenter --net=/run/netns/test ip addr

The output will be

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

As you can see this new network namespace doesn’t even have a loopback IP address so basically it doesn’t have
“localhost”. It shows us that a network namespace does not give us a fully configured private network, it only gives
us the network isolation. Now that we know it, it is not surprising that the following commands will give us error
messages.

sudo ip netns exec test ping dns.google
ping: dns.google: Temporary failure in name resolution
sudo ip netns exec test ping 8.8.8.8
ping: connect: Network is unreachable

Since this network namespace is useless without further configuration and configuring the network is not part of this
tutorial, we can delete it:

sudo ip netns del test

14.3.4 “unshare”: Temporary network namespace creation

If you want to create a temporary network namespace and run a command inside it, you can use unshare. This
command has similar parameters as nsenter but it doesn’t require existing namespaces. It will create new namespaces
for the commands that you want to run. IT could be useful when you just want to test an application that you it shouldn’t
use the network so you can run it in a safer environment.

sudo unshare -n ip addr

It will give you the same output as our previous attempt to create a network namespace.

1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

14.3. Manipulating network namespaces 59

Learn Docker

14.3.5 Working with Docker’s network namespaces

Allow the “ip” command to use Docker’s network namespaces

If you want, you could remove /run/netns and create a symbolic link instead pointing to /run/docker/netns.

sudo rm -r /run/netns
sudo ln -s /run/docker/netns /run/netns
ip netns list

Sometimes you can get an error message saying that

Error: rm: cannot remove ‘/run/netns’: Device or resource busy

Since we started to use the “ls” and “ip” commands to list namespaces, it is likely that we get this error message even
though we are not actively using that folder. There could be two solutions to be able to remove this folder:

• Exiting from current shell and opening a new one

• Rebooting the machine

The first will not always work, and the second is obviously something that you can’t do with a running production
server.

A better way of handling the situation is creating symbolic links under /run/netns pointing to files under /run/
docker/netns. In Docker’s terminology the file is called “sandbox key”. We can get the path of a container’s sandbox
key by using the following command:

sandboxKey=$(docker container inspect php --format '{{ .NetworkSettings.SandboxKey }}')

The end of that path is the filename which we will need to create a link under /run/netns.

netns=$(basename "$sandboxKey")

Using the above variables we can finally create our first symbolic link

sudo ln -s $sandboxKey /run/netns/$netns

Finally, ip netns ls will give us an output similar to the following:

a339e5fc43f0 (id: 0)

Name resolution issue with “ip netns exec”

It’s time to run ip netns exec to test the network of a Docker container.

sudo ip netns exec $netns ip addr
sudo ip netns exec $netns ping 8.8.8.8
sudo ip netns exec $netns ping dns.google

The first two lines will give the expected results, but the third line will give us the following error message.

60 Chapter 14. Docker network and network namespaces in practice

Learn Docker

Error: ping: dns.google: Temporary failure in name resolution

What happened?

We ran the ping command only in the network namespace of the container, which means the configuration files that are
supposed to control how name resolution works are loaded from the host. My host was an Ubuntu 20.04 LTS virtual
machine created by Multipass. By default, the IP address of the nameserver is 127.0.0.53. Remember, that this IP
address belongs to the loopback interface which is different in each network namespace. In the network namespace of
our PHP container there is no service listening on this IP address.

Solution 1: Change the configuration on the host

Danger: DO NOT test it in a production environment as it could also break your name resolution if you are doing
something wrong.

/etc/resolv.conf is usually a symbolic link pointing one of the following files:

• /run/systemd/resolve/stub-resolv.conf

• /run/systemd/resolve/resolv.conf

Depending on your system it could point to an entirely different file or it could also be a regular file instead of a symbolic
link. I will only discuss the above files in this tutorial.

Run the following command to get the real path of the configuration file.

readlink -f /etc/resolv.conf

14.3. Manipulating network namespaces 61

https://multipass.run/

Learn Docker

Note: Alternatively, you could also run realpath /etc/resolv.conf

If the output is /run/systemd/resolve/stub-resolv.conf, you are using the stub resolver and the content of the
file looks like this without the comments:

nameserver 127.0.0.53
options edns0 trust-ad
search .

On the other hand, /run/systemd/resolve/resolv.conf will directly contain the nameservers:

nameserver 192.168.205.1
search .

Now I will change the symbolic link:

sudo unlink /etc/resolv.conf
sudo ln -s /run/systemd/resolve/resolv.conf /etc/resolv.conf

After this I will be able to successfully ping the domain name of Google’s name server:

sudo ip netns exec $netns ping dns.google

I don’t want to keep this configuration, so I will restore the stub resolver:

sudo unlink /etc/resolv.conf
sudo ln -s /run/systemd/resolve/stub-resolv.conf /etc/resolv.conf

Solution 2: Using per-namespace resolv.conf

We can create additional configuration files for each network namespace. First we have to create a new folder using the
name of the namespace undr /etc/netns

sudo mkdir -p /etc/netns/$netns

After that we have to create a resolv.conf file in the new folder and add a nameserver definition like nameserver
8.8.8.8

echo "nameserver 8.8.8.8" | sudo tee /etc/netns/$netns/resolv.conf

And finally we can ping the domain name

sudo ip netns exec $netns ping dns.google

62 Chapter 14. Docker network and network namespaces in practice

Learn Docker

Solution 3: Using a custom mount namespace based on the original root filesystem

This is a very tricky solution which I would not recommend usually, but it could be useful to learn about the relation
of different types of namespaces. The solution is based on the following facts.

• The “nsenter” command allows us to define a custom root directory (mount namespace) instead of using an
existing mount namespace

• The “mount” command has a --bind flag which allows us to “bind mount” a folder to a new location. This is
similar to what Docker does if you choose “bind” as the type of a volume. See Bind mounts | Docker

• There are some folders that are not part of the root filesystem, so when we mount the root filesystem we don’t
mount those folders. /run is on tmpfs, so it is stored in memory.

• Mounting a file over a symbolic link is not possible, but mounting over an empty file which is a target of a
symbolic link works.

First we will set the variables again with an additional project_dir which you can change if you want

sandboxKey=$(docker container inspect php --format '{{ .NetworkSettings.SandboxKey }}')
pid="$(docker container inspect php --format '{{ .State.Pid }}')"

project_dir="$HOME/projects/netns"

Then we create the our project directory

mkdir -p "$project_dir"
cd "$project_dir"

Mount the system root to a local folder called “root”.

mkdir -p root
sudo mount --bind / root

Since “run” is on tmpfs and it wasn’t mounted, we create an empty file to work as a placeholder for the target of the
symbolic link at /etc/resolv.conf

14.3. Manipulating network namespaces 63

https://docs.docker.com/storage/bind-mounts/

Learn Docker

sudo mkdir -p "root/run/systemd/resolve/"
sudo touch "root/run/systemd/resolve/stub-resolv.conf"

Now we can copy the resolv.conf that contains the actual name servers and mount it over our placeholder
stub-resolv.conf.

cp "/run/systemd/resolve/resolv.conf" "resolv.conf"
sudo mount --bind "resolv.conf" "root/run/systemd/resolve/stub-resolv.conf"

And finally we can run the following nsenter command.

sudo nsenter -n --root=$PWD/root --target=$pid ping dns.google

Now nsenter will use $PWD/root as the filesystem of the new mount namespace and use the network namespace of the
PHP container to run ping.

PING dns.google (8.8.4.4) 56(84) bytes of data.
64 bytes from dns.google (8.8.4.4): icmp_seq=1 ttl=112 time=11.5 ms
64 bytes from dns.google (8.8.4.4): icmp_seq=2 ttl=112 time=12.1 ms
64 bytes from dns.google (8.8.4.4): icmp_seq=3 ttl=112 time=11.7 ms

14.3.6 Debugging the Minotaur

I call this technique “Debugging the Minotaur” because unlike before when we ran a new container to attach it to another
container’s network namespace, we are still on the host and we use most of the host’s namespaces and we choose to use
one container’s mount namespace (and only the mount namespace) and another container’s network namespace (and
only the network namespace). As we were creating a Minotaur where the body of the Minotaur is the mount namespace
of the debugger container with all of its tools and the head is the other container’s network namespace which we want
to debug. To do this, we use only nsenter and nothing else.

64 Chapter 14. Docker network and network namespaces in practice

Learn Docker

We know that we can use an executable on the host’s filesystem and run it in a network namespace. We can also choose
the mount namespace and that can be the filesystem of a running container. First we want to have a running debugger
container. nicolaka/netshoot is an excellent image to start a debugger container from. We need to run it in detached
mode (-d) so it will run in the background (not attaching to the container’s namespaces) and also in interactive mode
(-i) so it will keep running instead of exiting immediately.

docker run -d -i --name debug nicolaka/netshoot:v0.9

Now we need to get the sandbox key for the network namespace and since we want to debug the PHP container, we
will get the sandbox key from it. We also need something for the mount namespace of the debugger container. This is
a good time to learn that if we have an existing process, we can find all of its namespaces using a path like this:

/proc/<PID>/ns/<NAMESPACE>

where <PID> is the process id and <NAMESPACE> in case of the discussed best known namespaces is one of the follow-
ings: mnt, net, pid. We could use /proc/$pid/ns/net instead of the sandbox key, but in this example I will keep
it to demonstrate that you can do both.

php_sandbox_key=$(docker container inspect php --format '{{ .NetworkSettings.SandboxKey }
→˓}')
debug_pid=$(docker container inspect debug --format '{{ .State.Pid }}')

Now that we have the variables, let’s use nsenter a new way. So far we used the sandbox key only to help the ip
command to recognize the network namespaces. Now we have to refer to it directly and nsenter can do that.

sudo nsenter --net=$php_sandbox_key --mount=/proc/$debug_pid/ns/mnt ping dns.google

This way we have a ping command running, but sometimes we need to do more debugging. The ping command is
almost always available on Linux systems, although you can use tshark or tcpdump to see the network packets, but
I prefer to use tshark. The following command will show us packets going through the debugger container’s eth0
interface so you can actually see the source of everything before those packets are reaching the veth* interface on
the host. Since you can use tshark from the debugger container, you don’t have to install it. In case you have a more

14.3. Manipulating network namespaces 65

https://hub.docker.com/r/nicolaka/netshoot
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.tcpdump.org/

Learn Docker

advanced debugger script which for some reason needs to access other namespaces on the host, you can do that too.

sudo nsenter --net=$php_sandbox_key --mount=/proc/$debug_pid/ns/mnt tshark -i eth0

As a final step, open a new terminal and generate some traffic on the container network. Get the ip address of the
container and use curl to get the main page of the website in the container.

ip=$(docker container inspect php --format '{{ .NetworkSettings.IPAddress }}')
curl "$ip"

As a result, in the previous terminal window you should see the request packets and the response.

14.4 Testing a web-based application without internet in a container

14.4.1 Running a web browser in a net namespace on Linux (Docker CE)

If you are running Docker CE on Linux (not Docker Desktop), you can just use a web browser on your host operating
system and run it in the network namespace of a container. If the application inside is listening on localhost, you can
access it from the web browser in the same network namespace.

docker run -d --name php-networkless --network none itsziget/phar-examples:1.0
pid_networkless=$(docker container inspect php --format '{{ .State.Pid }}')
sudo nsenter --net=/proc/$pid_networkless/ns/net curl localhost

Or sometimes you know that the frontend is safe to use, so you only want to test the backend.

66 Chapter 14. Docker network and network namespaces in practice

Learn Docker

In that case you can run the container with network, but only with an “internal” network, so the host and the container
can communicate, but no traffic will be forwarded to the internet from the Docker bridge. This way you can run your
browser “on the host” and use the container’s ip address instead of “localhost”.

Note: Actually everything is running on the host. Only the isolated processes will see it differently.

You need to

• create an internal network,

• run the container using the internal network

• get the ip address of the container

• open your web browser or use curl to access the website

docker network create internal --internal
docker run -d --name php-internal --network internal itsziget/phar-examples:1.0
ip_internal=$(docker container inspect php-internal --format '{{ .NetworkSettings.
→˓Networks.internal.IPAddress }}')
curl "$ip_internal"

Since curl will not execute javascript, you can even check the generated source code, but nothing in the container will
be able to send request to the outside world except the host machine:

docker exec php-internal ping 8.8.8.8

14.4. Testing a web-based application without internet in a container 67

Learn Docker

14.4.2 Running a web browser in a net namespace in a VM (Docker Desktop)

When you start to use Docker Desktop, one of the most important facts is that your containers will run in a virtual
machine even on Linux (See: Getting Started: Docker Desktop). It means your actual host, the virtual machine and
the container’s will have their own “localhost”.

The network namespaces will be in that virtual machine, so you can’t just run your web browser on your host operating
system inside the network namespace.

68 Chapter 14. Docker network and network namespaces in practice

Learn Docker

You can’t even run the web browser in the virtual machine (in case of Docker Desktop) since that is just a server based
on LinuxKit without GUI inside so you can’t simply just use an internal network and connect to the IP address from
the browser.

We need a much more complex solution which requires everything that we have learnt so far and more.

• We know that our PHP app has to run in a container without internet access

• We also know that we can achieve that by using internal networks or no network at all except loopback interface.

• Since Docker Desktop runs containers in a virtual machine, we definitely need network in the PHP container
so we can access it from the outside. It means we obviously need to forward a port from the host to Docker
Desktop’s virtual machine, but we have also learnt that internal networks do not accept forwarded ports.

• We can however run a container with only an internal network and a proxy container with an internal and a public
network which will be accessible from the outside. This container will forward all traffic to another container in
the internal network.

• There is a way to run a web browser in a container and you can run this container in the PHP container’s network
namespace. The problem is that you need to access the graphical interface inside the container.

• Fortunately there is also a sponsored OSS project called linuxserver/firefox. This project let’s you run Firefox
and a remote desktop server in the container.

How will this all look like? The following diagram illustrates it.

14.4. Testing a web-based application without internet in a container 69

https://hub.docker.com/r/linuxserver/firefox

Learn Docker

• You will use a web browser on the host as a remote desktop client to access the forwarded port of the proxy server
on the IP address of the public network.

• The PHP container will have an internal network

• The Firefox container with the remote desktop client will use the network namespace of the PHP container so
Firefox will not have internet access.

• The proxy server (with both internal and public network) will forward your request to the PHP container’s network
namespace to access the remote desktop server.

• The remote desktop server will stream back the screen only through the proxy server so the graphical interface
of the containerized Firefox will appear in the web browser running on your host. If a harmful application tries
to use JavaScript to access another website it won’t be able to since all you can see is a picture of a web browser
running in an isolated environment.

I have created a compose file which we can use to create this whole environment.

Create a project folder anywhere you like. This is mine:

project_dir="$HOME/Data/projects/testprojects/netns"
mkdir -p "$project_dir"
cd "$project_dir"

Download the compose file from GitHub

curl --output compose.yml \
https://gist.githubusercontent.com/rimelek/91702f6e9c9e0ae75a72a42211099b63/raw/

→˓339beaf0c50790e86ab8a011ed298c250da3b7ec/compose.yml

Compose file content:

networks:
default:

(continues on next page)

70 Chapter 14. Docker network and network namespaces in practice

Learn Docker

(continued from previous page)

internal: true
public:

services:
php:
image: itsziget/phar-examples:1.0

firefox:
network_mode: service:php
environment:
PUID: 1000
PGID: 1000
TZ: Europe/London

shm_size: "1gb"
image: lscr.io/linuxserver/firefox:101.0.1

proxy:
image: alpine/socat:1.7.4.4-r0
command: "TCP-LISTEN:3000,fork,reuseaddr TCP:php:3000"
ports:
- 3000:3000

networks:
- default
- public

Start the containers:

docker compose up -d

If you open localhost:3000 in your browser, you will see the containerized browser and the demo application without
CSS and JavaScript since those files would be loaded from an external source and they are not available.

14.4. Testing a web-based application without internet in a container 71

Learn Docker

Now that you know it is trying to load CSS and some harmless JavaScripts, you can run it with a public network

docker run -d --name php-internet -p 8080:80 itsziget/phar-examples:1.0

and open it in an other tab on port 8080.

72 Chapter 14. Docker network and network namespaces in practice

Learn Docker

14.5 Used sources

• https://www.redhat.com/sysadmin/net-namespaces

• https://serverfault.com/a/704717

• https://serverfault.com/questions/1007562/linux-networking-bridge-with-veths-not-able-to-send-outbound-packets

• https://github.com/p8952/bocker/blob/master/bocker

• https://collabnix.com/a-beginners-guide-to-docker-networking/

14.6 Recommended similar tutorials

• https://iximiuz.com/en/posts/container-networking-is-simple/

14.5. Used sources 73

https://www.redhat.com/sysadmin/net-namespaces
https://serverfault.com/a/704717
https://serverfault.com/questions/1007562/linux-networking-bridge-with-veths-not-able-to-send-outbound-packets
https://github.com/p8952/bocker/blob/master/bocker
https://collabnix.com/a-beginners-guide-to-docker-networking/
https://iximiuz.com/en/posts/container-networking-is-simple/

Learn Docker

74 Chapter 14. Docker network and network namespaces in practice

CHAPTER

FIFTEEN

EVERYTHING ABOUT DOCKER VOLUMES

15.1 Intro

“Where are the Docker volumes?” This question comes up a lot on the Docker forum. There is no problem with
curiosity, but this is usually asked when someone wants to edit or at least read files directly on the volume from a
terminal or an IDE, but not through a container. So I must start with a statement:

Important: You should never handle files on a volume directly without entering a container, unless there is an
emergency, and even then, only at your own risk.

Why I am saying it, you will understand if you read the next sections. Although the original goal with this tutorial
was to explain where the volumes are, it is hard to talk about it without understanding what the volumes are and what
different options you have when using volumes. As a result of that, by reading this tutorial, you can learn basically
everything about the local volumes, but you can also search for volume plugins on Docker Hub.

15.2 Where does Docker store data?

Before we talk about the location of volumes, we first have to talk about the location of all data that Docker handles.
When I say “Docker”, I usually mean “Docker CE”.

Docker CE is the community edition of Docker and can run directly on Linux. It has a data root directory, which is the
following by default:

/var/lib/docker

You can change it in the daemon configuration, so if it is changed on your system, you will need to replace this folder
in the examples I show. To find out what the data root is, run the following command:

docker info --format '{{ .DockerRootDir }}'

In case of Docker Desktop of course, you will always have a virtual machine, so the path you get from the above
command will be in the virtual machine.

75

https://forums.docker.com
https://hub.docker.com/
https://docs.docker.com/engine/reference/commandline/dockerd/#on-linux

Learn Docker

15.3 What is a Docker volume?

For historical reasons, the concept of volumes can be confusing. There is a page in the documentation which describes
what volumes are, but when you see a Compose file or a docker run command, you see two types of volumes, but only
one of them is actually a volume.

Example Compose file:

services:
server:
image: httpd:2.4
volumes:
- ./docroot:/usr/local/apache2/htdocs

Did I just define a volume? No. It is a bind mount. Let’s just use the long syntax:

services:
server:
image: httpd:2.4
volumes:
- type: bind
source: ./docroot
target: /usr/local/apache2/htdocs

The “volumes” section should have been “storage” or “mounts” to be more clear. In fact, the “docker run” command
supports the --mount option in addition to -v and --volume, and only --mount supports the type parameter to directly
choose between volume and bind mount.

Then what do we call a volume? Let’s start with answering another question. What do we not call a volume? A file
can never be a volume. A volume is always a directory, and it is a directory which is created by Docker and handled by
Docker throughout the entire lifetime of the volume. The main purpose of a volume is to populate it with the content of
the directory to which you mount it in the container. That’s not the case with bind mounts. Bind mounts just completely
override the content of the mount point in the container, but at least you can choose where you want to mount it from.

You should also know that you can disable copying data from the container to your volume and use it as a simple bind
mount, except that Docker creates it in the Docker data root, and when you delete the volume after you wrote something
on it, you will lose the data.

volumes:
docroot:

services:
server:
image: httpd:2.4
volumes:
- type: volume
source: docroot
target: /usr/local/apache2/htdocs
volume:
nocopy: true

You can find this and other parameters in the documentation of volumes in a compose file. Scroll down to the “Long
syntax” to read about “nocopy”.

76 Chapter 15. Everything about Docker volumes

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/compose/compose-file/05-services/#volumes

Learn Docker

15.4 Custom volume path

15.4.1 Custom volume path overview

There is indeed a special kind of volume which seems to mix bind mounts and volumes. The following example will
assume you are using Docker CE on Linux.

volume_name="test-volume"
source="$PWD/$volume_name"

mkdir -p "$volume_name"
docker volume create "$volume_name" \
--driver "local" \
--opt "type=none" \
--opt "device=$source" \
--opt "o=bind"

Okay, so you created a volume and you also specified where the source directory is (device), and you specified that it
is a bind mount. Don’t worry, you find it confusing because it is confusing. o=bind doesn’t mean that you will bind
mount a directory into the container, which will always happen, but that you will bind mount the directory to the path
where Docker would have created the volume if you didn’t define the source.

This is basically the same what you would do on Linux with the mount command:

mount -o bind source/ target/

Without -o bind the first argument must be a block device. This is why we use the “device” parameter, even though
we mount a folder.

This is one way to know where the Docker volume is.

Note: Even the the above example assumed Linux, custom volume path would work on other operating systems as
well, since Docker Desktop would mount the required path into the virtual machine.

Let’s just test if it works and inspect the volume:

docker volume inspect test-volume

You will get a json like this:

[
{

"CreatedAt": "2024-01-05T00:55:15Z",
"Driver": "local",
"Labels": {},
"Mountpoint": "/var/lib/docker/volumes/test-volume/_data",
"Name": "test-volume",
"Options": {

"device": "/home/ta/test-volume",
"o": "bind",
"type": "none"

},
"Scope": "local"

(continues on next page)

15.4. Custom volume path 77

Learn Docker

(continued from previous page)

}
]

The “Mountpoint” field in the json is not the path in a container, but the path where the specified device should be
mounted at. In our case, the device is actually a directory. So let’s see the content of the mount point:

sudo ls -la $(docker volume inspect test-volume --format '{{ .Mountpoint }}')

You can also check the content of the source directory:

ls -la test-volume/

Of course, both are empty as we have no container yet. How would Docker know what the content should be? As we
already learned it, we need to mount the volume into a container to populate the volume.

docker run \
-d --name test-container \
-v test-volume:/usr/local/apache2/htdocs \
httpd:2.4

Check the content in the container:

docker exec test-container ls -lai /usr/local/apache2/htdocs/

Output:

total 16
256115 drwxr-xr-x 2 root root 4096 Jan 5 00:33 .
5112515 drwxr-xr-x 1 www-data www-data 4096 Apr 12 2023 ..
256139 -rw-r--r-- 1 501 staff 45 Jun 11 2007 index.html

Notice that we added the flag “i” to the “ls” command so we can see the inode number, which identifies the files and
directories on the filesystem in the first column.

Check the directory created by Docker:

sudo ls -lai $(docker volume inspect test-volume --format '{{ .Mountpoint }}')

256115 drwxr-xr-x 2 root root 4096 Jan 5 00:33 .
392833 drwx-----x 3 root root 4096 Jan 5 00:55 ..
256139 -rw-r--r-- 1 501 staff 45 Jun 11 2007 index.html

As you can see, only the parent directory is different, so we indeed see the same files in the container and in the directory
created by Docker. Now let’s check our source directory.

ls -lai test-volume/

Output:

total 12
256115 drwxr-xr-x 2 root root 4096 Jan 5 00:33 .
255512 drwxr-xr-x 11 ta ta 4096 Jan 5 00:32 ..
256139 -rw-r--r-- 1 501 staff 45 Jun 11 2007 index.html

78 Chapter 15. Everything about Docker volumes

Learn Docker

Again, the same files, except the parent. We confirmed, that we could create an empty volume directory, we could
populate it when we started a container and mounted the volume, and the files appeared where Docker creates volumes.
Now let’s check one more thing. Since this is a special volume where we defined some parameters, there is an opts.
json right next to _data

sudo cat "$(dirname "$(docker volume inspect test-volume --format '{{ .Mountpoint }}')")
→˓"/opts.json

Output:

{"MountType":"none","MountOpts":"bind","MountDevice":"/home/ta/test-volume","Quota":{
→˓"Size":0}}

Now remove the test container:

docker container rm -f test-container

Check the directory created by Docker:

sudo ls -lai $(docker volume inspect test-volume --format '{{ .Mountpoint }}')

It is empty now.

392834 drwxr-xr-x 2 root root 4096 Jan 5 00:55 .
392833 drwx-----x 3 root root 4096 Jan 5 00:55 ..

And notice that even the inode has changed, not just the content disappeared. On the other hand, the directory we
created is untouched and you can still find the index.html there.

15.4.2 Avoid accidental data loss on volumes

Let me show you an example using Docker Compose. The compose file would be the following:

volumes:
docroot:
driver: local
driver_opts:
type: none
device: ./docroot
o: bind

services:
httpd:
image: httpd:2.4
volumes:
- type: volume
source: docroot
target: /usr/local/apache2/htdocs

You can populate ./docroot in the project folder by running

docker compose up -d

15.4. Custom volume path 79

Learn Docker

You will then find index.html in the docroot folder. You probably know that you can delete a compose project by
running docker compose down, and delete the volumes too by passing the flag -v.

docker compose down -v

You can run it, and the volume will be destroyed, but not the content of the already populated “docroot” folder. It
happens, because the folder which is managed by Docker in the Docker data root does not physically have the content.
So the one that was managed by Docker could be safely removed, but it didn’t delete your data.

15.5 Docker CE volumes on Linux

This question seems to be already answered in the previous sections, but let’s evaluate what we learned and add some
more details.

So you can find the local default volumes under /var/lib/docker/volumes if you didn’t change the data root. For
the sake of simplicity of the commands, I will keep using the default path.

The Docker data root is not accessible by normal users, only by administrators. Run the following command:

sudo ls -la /var/lib/docker/volumes

You will see something like this:

total 140
drwx-----x 23 root root 4096 Jan 5 00:55 .
drwx--x--- 13 root root 4096 Dec 10 14:27 ..
drwx-----x 3 root root 4096 Jan 25 2023␣
→˓0c5f9867e761f6df0d3ea9411434d607bb414a69a14b3f240f7bb0ffb85f0543
drwx-----x 3 root root 4096 Sep 19 13:15␣
→˓1c963fb485fbbd5ce64c6513186f2bc30169322a63154c06600dd3037ba1749a
...
drwx-----x 3 root root 4096 Jan 5 2023 apps_cache
brw------- 1 root root 8, 1 Dec 10 14:27 backingFsBlockDev
-rw------- 1 root root 65536 Jan 5 00:55 metadata.db

These are the names of the volumes and two additional special files.

• backingFsBlockDev

• metadata.db

We are not going to discuss it in more details. All you need to know at this point is that this is where the volume
folders are. Each folder has a sub-folder called “_data” where the actual data is, and there could be an opts.json with
metadata next to the “_data” folder.

Note: When you use rootless Docker, the Docker data root will be in your user’s home.

$HOME/.local/share/docker

80 Chapter 15. Everything about Docker volumes

https://docs.docker.com/engine/security/rootless/

Learn Docker

15.6 Docker Desktop volumes

Docker Desktop volumes are different depending on the operating system and whether you want to run Linux containers
or Windows containers.

Docker Desktop always runs a virtual machine for Linux containers and runs Docker CE in it in a quite complicated
way, so your volumes will be in the virtual machine too. Because of that fact when you want to access the volumes,
you either have to find a way to run a shell in the virtual machine, or find a way to share the filesystem on the network
and use your filebrowser, IDE or terminal on the host.

Parts of what I show here and more can be found in my presentation which I gave on the 6th Docker Community
All-Hands. Tyler Charboneau wrote a blog post about it, but you can also find the video in the blog post.

15.6.1 Docker Desktop volumes on macOS

On macOS, you can only run Linux containers and there is no such thing as macOS container yet (2024. january).

You can get to the volumes folder by running the following command:

docker run --rm -it --privileged --pid host ubuntu:22.04 \
nsenter --all -t 1 \
sh -c 'cd /var/lib/docker/volumes && sh'

Or just simply mount that folder to a container:

docker run --rm -it \
-v /var/lib/docker/volumes:/var/lib/docker/volumes \
--workdir /var/lib/docker/volumes \
ubuntu:22.04 \
bash

You can also run an NFS server in a container that mounts the volumes so you can mount the remote fileshare on the
host. The following compose.yml file can be used to run the NFS server:

services:

nfs-server:
image: openebs/nfs-server-alpine:0.11.0
volumes:

- /var/lib/docker/volumes:/mnt/nfs
environment:
SHARED_DIRECTORY: /mnt/nfs
SYNC: sync
FILEPERMISSIONS_UID: 0
FILEPERMISSIONS_GID: 0
FILEPERMISSIONS_MODE: "0755"

privileged: true
ports:
- 127.0.0.1:2049:2049/tcp
- 127.0.0.1:2049:2049/udp

Start the server:

15.6. Docker Desktop volumes 81

https://www.docker.com/blog/how-to-fix-and-debug-docker-containers-like-a-superhero/
https://www.youtube.com/watch?v=8zVOCnfkycY

Learn Docker

docker compose up -d

Create the mount point on the host:

sudo mkdir -p /var/lib/docker/volumes
sudo chmod 0700 /var/lib/docker

Mount the base directory of volumes:

sudo mount -o vers=4 -t nfs 127.0.0.1:/ /var/lib/docker/volumes

And list the content:

sudo ls -l /var/lib/docker/volumes

15.6.2 Docker Desktop volumes on Windows

Docker Desktop on Windows allows you to switch between Linux containers and Windows containers.

To find out which one you are using, run the following command:

docker info --format '{{ .OSType }}'

If it returns “windows”, you are using Windows containers, and if it returns “linux”, you are using Linux containers.

82 Chapter 15. Everything about Docker volumes

Learn Docker

Linux containers

Since Linux containers always require a virtual machine, you will have your volumes in the virtual machine the same
way as you would on macOS. The difference is how you can access them. A common way is through a Docker container.
Usually I would run the following command.

docker run --rm -it --privileged --pid host ubuntu:22.04 `
nsenter --all -t 1 `
sh -c 'cd /var/lib/docker/volumes && sh'

But if you have an older kernel in WSL2 which doesn’t support the time namespace, you can get an error message like:

nsenter: cannot open /proc/1/ns/time: No such file or directory

If that happens, make sure you have the latest kernel in WSL2. If you built a custom kernel, you may need to rebuild it
from a new version.

If you can’t update the kernel yet, exclude the time namespace, and run the following command:

docker run --rm -it --privileged --pid host ubuntu:22.04 `
nsenter -m -n -p -u -t 1 `
sh -c 'cd /var/lib/docker/volumes && sh'

You can simply mount the base directory in a container the same way as we could on macOS:

docker run --rm -it `
-v /var/lib/docker/volumes:/var/lib/docker/volumes `
--workdir /var/lib/docker/volumes `
ubuntu:22.04 `
bash

We don’t need to run a server in a container to share the volumes, since it works out of the box in WSL2. You can just
open the Windows explorer and go to

\\wsl.localhost\docker-desktop-data\data\docker\volumes

Warning: WSL2 let’s you edit files more easily even if the files are owned by root on the volume, so do it at your
own risk. My recommendation is using it only for debugging.

15.6. Docker Desktop volumes 83

Learn Docker

Windows Containers

Windows containers can mount their volumes from the host. Let’s create a volume

docker volume create windows-volume

Inspect the volume:

You will get something like this:

[
{

"CreatedAt": "2024-01-06T16:27:03+01:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "C:\\ProgramData\\Docker\\volumes\\windows-volume_data",
"Name": "windows-volume",
"Options": null,
"Scope": "local"

}
]

So now you got the volume path on Windows in the “Mountpoint” field, but you don’t have access to, it unless you are
Administrator. The following command works only from Powershell run as Administrator

cd $(docker volume inspect windows-volume --format '{{ .Mountpoint }}')

If you want to access it from Windows Explorer, you can first go to

C:\ProgramData

Note: This folder is hidden by default, so if you want to open it, just type the path manually in the navigation bar, or
enable hidden folders on Windows 11 (works differently on older Windows):

Menu bar » View » Show » Hidden Items

84 Chapter 15. Everything about Docker volumes

Learn Docker

Then try to open the folder called “Docker” which gives you a prompt to ask for permission to access to folder.

and then try to open the folder called “volumes” which will do the same.

15.6. Docker Desktop volumes 85

Learn Docker

After that you can open any Windows container volume from Windows explorer.

15.6.3 Docker Desktop volumes on Linux

On Windows, you could have Linux containers and Window containers, so you had to switch between them. On Linux,
you can install Docker CE in rootful and rootless mode, and you can also install Docker Desktop. These are 3 different
and separate Docker installations and you can switch between them by changing context or logging in as a different
user.

You can check the existing contexts by running the following command:

docker context ls

If you have Docker CE installed on your Linux, and you are logged in as a user who installed the rootless Docker, and
you also have Docker Desktop installed, you can see at least the following three contexts:

NAME TYPE DESCRIPTION DOCKER␣
→˓ENDPOINT KUBERNETES ENDPOINT ORCHESTRATOR
default moby Current DOCKER_HOST based configuration unix://
→˓/var/run/docker.sock
desktop-linux * moby Docker Desktop unix://
→˓/home/ta/.docker/desktop/docker.sock
rootless moby Rootless mode unix://
→˓/run/user/1000/docker.sock

In order to use Docker Desktop, you need to switch to the context called “desktop-linux”.

86 Chapter 15. Everything about Docker volumes

Learn Docker

docker context use desktop-linux

Important: The default is usually rootful Docker CE and the other too are obvious. Only the rootful Docker CE needs
to run as root, so if you want to interact with Docker Desktop, don’t make the mistake of running the docker commands
with sudo:

sudo docker context ls

NAME TYPE DESCRIPTION DOCKER␣
→˓ENDPOINT KUBERNETES ENDPOINT ORCHESTRATOR
default * moby Current DOCKER_HOST based configuration unix://
→˓/var/run/docker.sock

In terms of accessing volumes, Docker Desktop works similarly on macOS and Linux, so you have the following
options:

Run a shell in the virtual machine using nsenter:

docker run --rm -it --privileged --pid host ubuntu:22.04 \
nsenter --all -t 1 \
sh -c 'cd /var/lib/docker/volumes && sh'

Or just simply mount that folder to a container:

docker run --rm -it \
-v /var/lib/docker/volumes:/var/lib/docker/volumes \
--workdir /var/lib/docker/volumes \
ubuntu:22.04 \
bash

And of course, you can use the nfs server compose project with the following compose.yml

services:
nfs-server:
image: openebs/nfs-server-alpine:0.11.0
volumes:

- /var/lib/docker/volumes:/mnt/nfs
environment:
SHARED_DIRECTORY: /mnt/nfs
SYNC: sync
FILEPERMISSIONS_UID: 0
FILEPERMISSIONS_GID: 0
FILEPERMISSIONS_MODE: "0755"

privileged: true
ports:
- 127.0.0.1:2049:2049/tcp
- 127.0.0.1:2049:2049/udp

and prepare the mount point. Remember, you can have Docker CE running as root, which means /var/lib/docker
probably exists, so let’s create the mount point as /var/lib/docker-desktop/volumes:

15.6. Docker Desktop volumes 87

Learn Docker

sudo mkdir -p /var/lib/docker-desktop/volumes
sudo chmod 0700 /var/lib/docker-desktop

And mount it:

sudo mount -o vers=4 -t nfs 127.0.0.1:/ /var/lib/docker-desktop/volumes

And check the content:

sudo ls -l /var/lib/docker-desktop/volumes

You could ask why we mount the volumes into a folder on the host, which requires sudo if the docker commands don’t.
The reason is that you will need sudo to use the mount command, so it shouldn’t be a problem to access the volumes
as root.

15.7 Editing files on volumes

15.7.1 The danger of editing volume contents outside a container

Now you know how you can find out where the volumes are. You also know how you can create a volume with a custom
path, even if you are using Docker Desktop, which creates the default volumes inside a virtual machine.

But most of you wanted to know where the volumes were to edit the files.

Danger: Any operation inside the Docker data root is dangerous, and can break your Docker completely, or cause
problems that you don’t immediately recognize, so you should never edit files without mounting the volume into a
container, except if you defined a custom volume path so you don’t have to go into the Docker data root.

Even if you defined a custom path, we are still talking about a volume, which will be mounted into a container, in
which the files can be accessed by a process which requires specific ownership and permissions. By editing the
files from the host, you can accidentally change the permission or the owner making it inaccessible for the process
in the container.

Even though I don’t recommend it, I understand that sometimes we want to play with our environment to learn more
about, but we still have to try to find a less risky way to do it.

You know where the volumes are, and you can edit the files with a text editor from command line or even from the
graphical interface. One problem on Linux and macOS could be setting the proper permissions so you can edit the
files even if you are not root. Discussing permissions could be another tutorial, but this is one reason why we have to
try to separate the data managed by a process in a Docker container from the source code or any files that requires an
interactive user. Just think of an application that is not running in a container, but the files still have to be owned by
another user. An example could be a webserver, where the files has to be owned by a user or group so the webserver
has access to the files, while you still should be able to upload files.

88 Chapter 15. Everything about Docker volumes

Learn Docker

15.7.2 View and Edit files through Docker Desktop

Docker Desktop let’s you browse files from the GUI, which is great for debugging, but I don’t recommend it for editing
files, even though Docker Desktop makes that possible too. Let’s see why I am saying it.

Open the Containers tab of Docker Desktop.

Click on the three dots in the line of the container in which you want to browse files

Go to a file that you want to edit

15.7. Editing files on volumes 89

Learn Docker

Note: Notice that Docker Desktop shows you whether the files are modified on the container’s filesystem, or you see
a file on a volume.

Right click on the file and select “Edit file”.

Before you do anything, run a test container:

docker run -d --name httpd -v httpd_docroot:/usr/local/apache2/htdocs httpd:2.4

And check the permissions of the index file:

docker exec -it httpd ls -l /usr/local/apache2/htdocs/

You will see this:

-rw-r--r-- 1 504 staff 45 Jun 11 2007 index.html

You can then edit the file and click on the floppy icon on the right side or just press CTRL+S (Command+S on macOS)
to save the modification.

Then run the following command from a terminal:

90 Chapter 15. Everything about Docker volumes

Learn Docker

docker exec -it httpd ls -l /usr/local/apache2/htdocs/

And you will see that the owner of the file was changed to root.

total 4
-rw-r--r-- 1 root root 69 Jan 7 12:21 index.html

One day it might work better, but I generally don’t recommend editing files in containers from the Graphical interface.

Edit only source code that you mount into the container during development or Use Compose watch to update the files
when you edit them, but let the data be handled only by the processes in the containers.

Some applications are not optimized for running in containers and there are different folders and files at the same place
where the code is, so it is hard to work with volumes and mounts while you let the process in the container change a
config file, which you also want to edit occasionally. In that case you ned to learn how permissions are handled on
Linux using the chmod and chown commands so you both have permission to access the files.

15.7.3 Container based dev environments

Docker Desktop Dev environment

One of the features of Docker Desktop is that you can run a development environment in a container. In this tutorial
we will not discuss it in details, but it is good to know that it exists, and you can basically work inside a container into
which you can mount volumes.

More information in the documentation of the Dev environment

Visual Studio Code remote development

The dev environment of Docker Desktop can be opened from Visual Studio Code as it supports opening projects in
containers similarly to how it supports remote development through SSH connection or in Windows Subsystem for
Linux. You can use it without Docker Desktop to simply open a shell in a container or even open a project in a
container.

More information is in the documentation of VSCode about containers.

Visual Studio Code dev containers

Microsoft also created container images for creating a dev container, which is similar to what Docker Desktop supports,
but the process of creating a dev container is different.

More information in the documentation of VSCode about dev containers.

15.8 Conclusion

There are multiple ways to browse the content of the Docker volumes, but it is not recommended to edit the files on the
volumes. If you know enough about how containers work and what are the folders and files that you can edit without
harming your system, you probably know enough not to edit the files that way in the first place.

For debugging reasons or to learn about Docker by changing things in the environment, you can still edit the files at
your own risk.

15.8. Conclusion 91

https://docs.docker.com/compose/file-watch/
https://docs.docker.com/desktop/dev-environments/
https://code.visualstudio.com/docs/containers/overview
https://code.visualstudio.com/docs/devcontainers/containers

Learn Docker

Everything I described in this tutorial is true even if the user is not an interactive user, but an external user from the
container’s point of view, trying to manage files directly in the Docker data root.

So with that in mind if you ever think of doing something like that, stop for a moment, grab a paper and write the
following sentence 20 times to the paper:

“I do not touch the Docker data root directly.”

If you enjoyed this tutorial, I also recommend reading about Volume-only Compose projects.

92 Chapter 15. Everything about Docker volumes

https://dev.to/rimelek/docker-compose-volumes-volume-only-projects-and-init-containers-5468

	Getting started
	Docker CE vs Docker Desktop
	Requirements
	Install Docker
	Install Docker Compose v2
	jq for parsing json files
	Operating system

	Clone the git repository
	Scripts
	Example projects

	LXD
	Install LXD 4.0 LTS
	Remote repositories
	Search for images
	Show image information
	Start Ubuntu 20.04 container
	List LXC containers
	Enter the container
	Delete the container
	Start Ubuntu 20.04 VM

	Docker
	System information
	Run a stateless DEMO application
	Play with the “hello-world” container
	Start “hello-world” container
	List containers
	Delete containers
	Start a container with a name
	Start a container and delete it automatically when it stops

	Start an Ubuntu container
	Start Ubuntu in foreground (“attached” mode)
	Start Ubuntu in background (“detached” mode)
	Attach the container

	Start Apache HTTPD webserver
	Start the container in the foreground
	Start it in the background
	Check container logs
	Open the webpage using an IP address
	Use port forwarding
	How we could enter a container in the past
	Share namespaces

	Start Ubuntu virtual machine

	Start a simple web server with mounted document root
	Build yur own web server image and copy the document root into the image
	Create your own PHP application with built-in PHP web server
	Create a simple Docker Compose project
	Communication of PHP and Apache HTTPD web server with the help of Docker Compose
	Run multiple Docker Compose projects on the same port using nginx-proxy
	Protect your web server with HTTP authentication
	Memory limit test in a Bash container
	Files
	Description
	Start the test
	Explanation of the parameters

	CPU limit test
	Files

	Learn what EXPOSE is and when it matters
	Intro
	Accessing services from the host using the container’s IP address
	Using user-defined networks to access services in containers
	What is the connection between port forwards and exposed ports?

	Docker network and network namespaces in practice
	Linux Kernel Namespaces in general
	Network traffic between a container and the outside world
	Manipulating network namespaces
	Two containers using the same network namespace
	“nsenter”: run commands in any namespace
	“ip netns” to create new network namespaces
	“unshare”: Temporary network namespace creation
	Working with Docker’s network namespaces
	Allow the “ip” command to use Docker’s network namespaces
	Name resolution issue with “ip netns exec”
	Solution 1: Change the configuration on the host
	Solution 2: Using per-namespace resolv.conf
	Solution 3: Using a custom mount namespace based on the original root filesystem

	Debugging the Minotaur

	Testing a web-based application without internet in a container
	Running a web browser in a net namespace on Linux (Docker CE)
	Running a web browser in a net namespace in a VM (Docker Desktop)

	Used sources
	Recommended similar tutorials

	Everything about Docker volumes
	Intro
	Where does Docker store data?
	What is a Docker volume?
	Custom volume path
	Custom volume path overview
	Avoid accidental data loss on volumes

	Docker CE volumes on Linux
	Docker Desktop volumes
	Docker Desktop volumes on macOS
	Docker Desktop volumes on Windows
	Linux containers
	Windows Containers

	Docker Desktop volumes on Linux

	Editing files on volumes
	The danger of editing volume contents outside a container
	View and Edit files through Docker Desktop
	Container based dev environments
	Docker Desktop Dev environment
	Visual Studio Code remote development
	Visual Studio Code dev containers

	Conclusion

